随机森林
开发者:oebiotech
|
更新于1 月前
|
浏览量 72
随机森林是一种机器学习算法,最早由 Leo Breiman 和 Adele Cutler 提出,该算法能够对微生物群落样本进行有效且准确的分类,并且可以找出能够区分组间差异的关键成分(OTU或物种)。简单的说,随机森林就是用随机的方式建立一个森林,森林里面有很多的决策树,并且每棵树之间是没有关联的。得到一个森林后,当有一个新的样本输入,森林中的每一棵决策树会分别进行一下判断,进行类别归类(针对分类算法),最后比较一下被判定哪一类最多,就预测该样本为哪一类。